

WELCOME

6.4: Hinge Theorem

Last Night's HW: 6.2-3 Handout

Tonight's HW: 6.4 Handout

QUIZ TODAY!!

Chapter 5/6 Test: Tuesday!

Warm Up

Write a 2 Column Proof:

$$
\begin{aligned}
\text { Given }: & \overline{P Q} \| \overline{R S} \\
& \angle P R Q \cong \angle S Q R \\
\text { Prove }: & \triangle P Q R \cong \triangle S R Q
\end{aligned}
$$

Quiz!

Chapter 6 Section 4 Learning Target

I can write the inverse and contrapositive of a conditional
6.4 statement.

Review:

Inverse \& Contrapositive

Inverse:

Made by negating (making opposite) the hypotheses and conclusion of the Conditional.

Conditional
If $\mathrm{m} \angle \mathrm{A}=30^{\circ}$, then $\angle \mathrm{A}$ is acute

Inverse
If $m \angle A \neq 30^{\circ}$, then $\angle A$ isn't acute

Contrapositive:

Made by negating (making opposite) the hypotheses and conclusion of the Converse.

Converse

If $\angle A$ is acute, then $m \angle A=30^{\circ}$

Contrapositive

If $\angle A$ isn't acute, then $\mathrm{m} \angle \mathrm{A} \neq 30^{\circ}$

Hinge Theorem

Given two sides of a Δ are \cong to two sides of another Δ... The angle between is greater in one triangle IFF the side opposite is greater in that triangle as well.

$$
\overline{E F}>\overline{B C} \quad \text { IFF } \angle D>\angle A
$$

Examples:

In Exercises 3-5, complete with $<$, $>$, or $=$.
3. $m \angle 1$? $m \angle 2$

4. $K L ? N Q$

5. $D C$? $F E$

Proof Practice \#3

1)

Given: $\quad \overline{\boldsymbol{B A}} \cong \overline{\boldsymbol{D C}}$ $\angle B \& \angle D$ are Right $\angle s$

Prove: $\quad \triangle B C A \cong \triangle D A C$

1)

| Statement_ | Reason___ |
| :--- | :--- | $\begin{array}{ll}\text { Given: } & \overline{A W} \cong \overline{A E} \\ \angle B \cong \angle R\end{array}$

