

WELCOME

6.4: Hinge Theorem

Last Night's HW: 6.2-3 Handout

Tonight's HW: 6.4 Handout

QUIZ TODAY!!

Chapter 5/6 Test: Tuesday!

Warm Up

Write a 2 Column Proof:

Given : $\overline{PQ} \parallel \overline{RS}$

 $\angle PRQ \cong \angle SQR$

Prove: $\triangle PQR \cong \triangle SRQ$

Quiz!

Chapter 6 Section 4 Learning Target

I can write the inverse and contrapositive of a conditional	6.4
statement.	

Review:

Inverse & Contrapositive

Inverse:

Made by negating (making opposite) the hypotheses and conclusion of the Conditional.

Conditional

If $m\angle A = 30^{\circ}$, then $\angle A$ is acute

Inverse

If $m\angle A \neq 30^{\circ}$, then $\angle A$ isn't acute

Contrapositive:

Made by negating (making opposite) the hypotheses and conclusion of the Converse.

Converse

If $\angle A$ is acute, then $m\angle A = 30^{\circ}$

Contrapositive

If $\angle A$ isn't acute, then $m\angle A \neq 30^{\circ}$

Hinge Theorem

Given two sides of a Δ are \cong to two sides of another Δ ...

The angle between is greater in one triangle IFF the side opposite is greater in that triangle as well.

Examples:

In Exercises 3–5, complete with <, >, or =.

3. m∠1 ? m∠2

27

26

5. DC ? FE

Proof Practice #3

Prove: $\Delta BCA \cong \Delta DAC$

Statement Reason

